空氣動(dòng)力學(xué)是流體力學(xué)與氣體動(dòng)力學(xué)的一個(gè)分支,研究飛行器或其他物體在同空氣或其他氣體作相對運動(dòng)情況下的受力特性、氣體的流動(dòng)規律和伴隨發(fā)生的物理化學(xué)變化。它是在流體力學(xué)的基礎上,隨著(zhù)航空工業(yè)和噴氣推進(jìn)技術(shù)的發(fā)展而成長(cháng)起來(lái)的一個(gè)學(xué)科。

中文名

空氣動(dòng)力學(xué)

外文名

Aerodynamics

學(xué)科門(mén)類(lèi)

力學(xué)

研究對象

飛機,導彈等飛行器

研究范圍

物體在可壓縮流體中的運動(dòng)與受力

代表人物

馮卡門(mén)

應用

航空工業(yè)和噴氣推進(jìn)技術(shù)

發(fā)展簡(jiǎn)史

牛頓

對空氣動(dòng)力學(xué)的研究,可以追溯到人類(lèi)早期對鳥(niǎo)或彈丸在飛行時(shí)的受力和力的作用方式的種種猜測。17世紀后期,荷蘭物理學(xué)家惠更斯(Huygens)首先估算出物體在空氣中運動(dòng)的阻力;1726年,牛頓(Newton)應用力學(xué)原理和演繹方法得出:在空氣中運動(dòng)的物體所受的力,正比于物體運動(dòng)速度的平方和物體的特征面積以及空氣的密度。這一工作可以看作是空氣動(dòng)力學(xué)經(jīng)典理論的開(kāi)始。1755年,數學(xué)家歐拉(Euler)得出了描述無(wú)粘性流體運動(dòng)的微分方程,即歐拉運動(dòng)微分方程。這些微分形式的動(dòng)力學(xué)方程在特定條件下可以積分,得出很有實(shí)用價(jià)值的結果,如伯努利方程。法國力學(xué)家J.le.T.達朗貝爾在不考慮黏性影響的情況下,得到運動(dòng)不受阻力的佯謬(達朗貝爾佯謬),這一結果引起了很多學(xué)者的關(guān)注,19世紀上半葉,法國的納維(Navier)和英國的斯托克斯(Stokes)提出了描述粘性不可壓縮流體動(dòng)量守恒的運動(dòng)方程,后稱(chēng)為納維-斯托克斯方程。[3]

到19世紀末,經(jīng)典流體力學(xué)的基礎已經(jīng)形成。20世紀以來(lái),隨著(zhù)航空事業(yè)的迅速發(fā)展,空氣動(dòng)力學(xué)便從流體力學(xué)中發(fā)展出來(lái)并形成力學(xué)的一個(gè)新的分支,這一過(guò)程中馮卡門(mén)對空氣動(dòng)力學(xué)的發(fā)展起了重要作用。

航空要解決的首要問(wèn)題是如何獲得飛行器所需要的升力、減小飛行器的阻力和提高它的飛行速度。這就要從理論和實(shí)踐上研究飛行器與空氣相對運動(dòng)時(shí)作用力的產(chǎn)生及其規律。[1]1894年,英國的蘭徹斯特(Lanchester)首先提出無(wú)限翼展機翼或翼型產(chǎn)生升力的環(huán)量理論,和有限翼展機翼產(chǎn)生升力的渦旋理論等。但蘭徹斯特的想法在當時(shí)并未得到廣泛重視。

約在1901~1910年間,庫塔(Kutta)和茹科夫斯基(Zhukovski)分別獨立地提出了翼型的環(huán)量和升力理論,并給出升力理論的數學(xué)形式,建立了二維機翼理論。1904年,德國的普朗特(Plandtl)發(fā)表了著(zhù)名的低速流動(dòng)的邊界層理論(又名附面層理論)。該理論指出在不同的流動(dòng)區域中控制方程可有不同的簡(jiǎn)化形式。

邊界層理論極大地推進(jìn)了空氣動(dòng)力學(xué)的發(fā)展。普朗特還把有限翼展的三維機翼理論系統化,給出它的數學(xué)結果,從而創(chuàng )立了有限翼展機翼的升力線(xiàn)理論。但它不能適用于失速、后掠和小展弦比的情況。1946年美國的瓊斯(Jones)提出了小展弦比機翼理論,利用這一理論和邊界層理論,可以足夠精確地求出機翼上的壓力分布和表面摩擦阻力。

奧地利-捷克物理學(xué)家和哲學(xué)家恩斯特·馬赫

近代航空和噴氣技術(shù)的迅速發(fā)展使飛行速度迅猛提高。[4]在高速運動(dòng)的情況下,必須把流體力學(xué)和熱力學(xué)這兩門(mén)學(xué)科結合起來(lái),才能正確認識和解決高速空氣動(dòng)力學(xué)中的問(wèn)題。1887~1896年間,奧地利科學(xué)家馬赫(Mach)在研究彈丸運動(dòng)擾動(dòng)的傳播時(shí)指出:在小于或大于聲速的不同流動(dòng)中,彈丸引起的擾動(dòng)傳播特征是根本不同的。在高速流動(dòng)中,流動(dòng)速度與當地聲速之比是一個(gè)重要的無(wú)量綱參數。[2]1929年,德國空氣動(dòng)力學(xué)家阿克萊特首先把這個(gè)無(wú)量綱參數與馬赫的名字聯(lián)系起來(lái),十年后,馬赫數這個(gè)特征參數在氣體動(dòng)力學(xué)中廣泛引用。

小擾動(dòng)在超聲速流中傳播會(huì )疊加起來(lái)形成有限量的突躍——激波。在許多實(shí)際超聲速流動(dòng)中也存在著(zhù)激波。在絕熱情況下,氣流通過(guò)激波流場(chǎng),參量發(fā)生突躍,熵增加而總能量保持不變。

英國科學(xué)家蘭金(Rankine)在1870年、法國科學(xué)家希貢紐(Hugoniot)在1887年分別獨立地建立了氣流通過(guò)激波所應滿(mǎn)足的關(guān)系式,為超聲速流場(chǎng)的數學(xué)處理提供了正確的邊界條件。對于薄翼小擾動(dòng)問(wèn)題,阿克萊特(Arkwright)在1925年提出了二維線(xiàn)化機翼理論,以后又相應地出現了三維機翼的線(xiàn)化理論。這些超聲速流的線(xiàn)化理論圓滿(mǎn)地解決了流動(dòng)中小擾動(dòng)的影響問(wèn)題。

在飛行速度或流動(dòng)速度接近聲速時(shí),飛行器的氣動(dòng)性能發(fā)生急劇變化,阻力突增,升力驟降。飛行器的操縱性和穩定性極度惡化,這就是航空史上著(zhù)名的聲障。大推力發(fā)動(dòng)機的出現沖過(guò)了聲障,但并沒(méi)有很好地解決復雜的跨聲速流動(dòng)問(wèn)題。直至20世紀60年代以后,由于跨聲速巡航飛行、機動(dòng)飛行,以及發(fā)展高效率噴氣發(fā)動(dòng)機的要求,跨聲速流動(dòng)的研究更加受到重視,并有很大的發(fā)展。

人造衛星的研制推動(dòng)空氣動(dòng)力學(xué)的發(fā)展

遠程導彈和人造衛星的研制推動(dòng)了高超聲速空氣動(dòng)力學(xué)的發(fā)展。在50年代到60年代初,確立了高超聲速無(wú)粘流理論和氣動(dòng)力的工程計算方法。60年代初,高超聲速流動(dòng)數值計算也有了迅速的發(fā)展。通過(guò)研究這些現象和規律,發(fā)展了高溫氣體動(dòng)力學(xué)、高速邊界層理論和非平衡流動(dòng)理論等。

由于在高溫條件下會(huì )引起飛行器表面材料的燒蝕和質(zhì)量的引射,需要研究高溫氣體的多相流。空氣動(dòng)力學(xué)的發(fā)展出現了與多種學(xué)科相結合的特點(diǎn)。空氣動(dòng)力學(xué)發(fā)展的另一個(gè)重要方面是實(shí)驗研究,包括風(fēng)洞等各種實(shí)驗設備的發(fā)展和實(shí)驗理論、實(shí)驗方法、測試技術(shù)的發(fā)展。世界上第一個(gè)風(fēng)洞是英國的韋納姆(Wenham)在1871年建成的。到今天適用于各種模擬條件、目的、用途和各種測量方式的風(fēng)洞已有數十種之多,風(fēng)洞實(shí)驗的內容極為廣泛。

20世紀40年代后期的風(fēng)洞控制系統已由早期簡(jiǎn)單的手控設備發(fā)展成為部分電子控制設備。60年代以來(lái),在風(fēng)洞測控技術(shù)、儀器、測量項目、種類(lèi)、精度要求、計算機自動(dòng)控制和記錄以及結果處理方面,都有很大的發(fā)展。模擬雷諾數的實(shí)驗也引起人們的重視。

20世紀70年代以來(lái),激光技術(shù)、電子技術(shù)和電子計算機的迅速發(fā)展,極大地提高了空氣動(dòng)力學(xué)的實(shí)驗水平和計算水平,促進(jìn)了對高度非線(xiàn)性問(wèn)題和復雜結構(如湍流)的流動(dòng)的研究。

除了上述由航空航天事業(yè)的發(fā)展推進(jìn)空氣動(dòng)力學(xué)的發(fā)展之外,60年代以來(lái),由于交通、運輸、建筑、氣象、環(huán)境保護和能源利用等多方面的發(fā)展,出現了工業(yè)空氣動(dòng)力學(xué)等分支學(xué)科。

研究方法

空氣動(dòng)力學(xué)的研究,分理論和實(shí)驗兩個(gè)方面。理論和實(shí)驗研究?jì)烧弑舜嗣芮薪Y合,相輔相成。理論研究所依據的一般原理有:運動(dòng)學(xué)方面,遵循質(zhì)量守恒定律;動(dòng)力學(xué)方面,遵循牛頓第二定律;能量轉換和傳遞方面,遵循能量守恒定律;熱力學(xué)方面,遵循熱力學(xué)第一和第二定律;介質(zhì)屬性方面,遵循相應的氣體狀態(tài)方程和粘性、導熱性的變化規律等等。

它力學(xué)分支學(xué)科

靜力學(xué)、動(dòng)力學(xué)、流體力學(xué)、分析力學(xué)、運動(dòng)學(xué)、固體力學(xué)、材料力學(xué)、復合材料力學(xué)、流變學(xué)、結構力學(xué)、彈性力學(xué)、塑性力學(xué)、爆炸力學(xué)、磁流體力學(xué)、空氣動(dòng)力學(xué)、理性力學(xué)、物理力學(xué)、天體力學(xué)、生物力學(xué)、計算力學(xué)

物理學(xué)分支

物理學(xué)概覽、力學(xué)、熱學(xué)、光學(xué)、聲學(xué)、電磁學(xué)、核物理學(xué)、固體物理學(xué)

研究?jì)热?/h3>

在低速空氣動(dòng)力學(xué)中,介質(zhì)密度變化很小,可視為常數,使用的基本理論是無(wú)粘二維和三維的位勢流、翼型理論、升力線(xiàn)理論、升力面理論和低速邊界層理論等;對于亞聲速流動(dòng),無(wú)粘位勢流動(dòng)服從非線(xiàn)性橢圓型偏微分方程,研究這類(lèi)流動(dòng)的主要理論和近似方法有小擾動(dòng)線(xiàn)化方法,普朗特-格勞厄脫法則、卡門(mén)-錢(qián)學(xué)森公式和速度圖法,在粘性流動(dòng)方面有可壓縮邊界層理論;對于超聲速流動(dòng),無(wú)粘流動(dòng)所服從的方程是非線(xiàn)性雙曲型偏微分方程。

在超聲速流動(dòng)中,基本的研究?jì)热菔菈嚎s波、膨脹波、激波、普朗特-邁耶爾流動(dòng)(壓縮波與膨脹波的基本關(guān)系模型及其函數模型)、錐型流,等等。主要的理論處理方法有超聲速小擾動(dòng)理論、特征線(xiàn)法和高速邊界層理論等。跨聲速無(wú)粘流動(dòng)可分外流和內流兩大部分,流動(dòng)變化復雜,流動(dòng)的控制方程為非線(xiàn)性混合型偏微分方程,從理論上求解困難較大。

高超聲速流動(dòng)的主要特點(diǎn)是高馬赫數和大能量,這些特點(diǎn)是流動(dòng)具有一般超音速流動(dòng)所沒(méi)有的流體動(dòng)力特征和物理化學(xué)變化。在高超聲速流動(dòng)中,真實(shí)氣體效應和激波與邊界層相互干擾問(wèn)題變得比較重要。高超聲速流動(dòng)分無(wú)粘流動(dòng)和高超聲速粘性流兩大方面。

工業(yè)空氣動(dòng)力學(xué)主要研究在大氣邊界層中,風(fēng)同各種結構物和人類(lèi)活動(dòng)間的相互作用,以及大氣邊界層內風(fēng)的特性、風(fēng)對建筑物的作用、風(fēng)引起的質(zhì)量遷移、風(fēng)對運輸車(chē)輛的作用和風(fēng)能利用,以及低層大氣的流動(dòng)特性和各種顆粒物在大氣中的擴散規律,特別是湍流擴散的規律,等等。

分類(lèi)

通常所說(shuō)的空氣動(dòng)力學(xué)研究?jì)热菔秋w機,導彈等飛行器在各種飛行條件下流場(chǎng)中氣體的速度、溫度、壓力和密度等參量的變化規律,飛行器所受的升力和阻力等空氣動(dòng)力及其變化規律,氣體介質(zhì)或氣體與飛行器之間所發(fā)生的物理化學(xué)變化以及傳熱傳質(zhì)規律等。從這個(gè)意義上講,空氣動(dòng)力學(xué)可有兩種分類(lèi)法:

1)根據流體運動(dòng)的速度范圍或飛行器的飛行速度,空氣動(dòng)力學(xué)可分為低速空氣動(dòng)力學(xué)和高速空氣動(dòng)力學(xué)。通常大致以400千米/小時(shí)(這一數值接近于地面1atm,288.15K下0.3Ma的值)這一速度作為劃分的界線(xiàn)。在低速空氣動(dòng)力學(xué)中,氣體介質(zhì)可視為不可壓縮的,對應的流動(dòng)稱(chēng)為不可壓縮流動(dòng)。大于這個(gè)速度的流動(dòng),須考慮氣體的壓縮性影響和氣體熱力學(xué)特性的變化。這種對應于高速空氣動(dòng)力學(xué)的流動(dòng)稱(chēng)為可壓縮流動(dòng)。

2)根據流動(dòng)中是否必須考慮氣體介質(zhì)的粘性,空氣動(dòng)力學(xué)又可分為理想空氣動(dòng)力學(xué)(或理想氣體動(dòng)力學(xué))和粘性空氣動(dòng)力學(xué)。

除了上述分類(lèi)以外,空氣動(dòng)力學(xué)中還有一些邊緣性的分支學(xué)科。例如稀薄氣體動(dòng)力學(xué)、高溫氣體動(dòng)力學(xué)等。